skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Christ, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Holder-Brascamp-Lieb inequalities provide upper bounds for a class of multilinear expressions, in terms of L^p norms of the functions involved. They have been extensively studied for functions defined on Euclidean spaces. Bennett-Carbery-Christ-Tao have initiated the study of these inequalities for discrete Abelian groups and, in terms of suitable data, have characterized the set of all tuples of exponents for which such an inequality holds for specified data, as the convex polyhedron defined by a particular finite set of affine inequalities. In this paper we advance the theory of such inequalities for torsion-free discrete Abelian groups in three respects.The optimal constant in any such inequality is shown to equal 1 whenever it is finite.An algorithm that computes the admissible polyhedron of exponents is developed. It is shown that nonetheless, existence of an algorithm that computes the full list of inequalitiesin the Bennett-Carbery-Christ-Tao description of the admissible polyhedron for all data,is equivalent to an affirmative solution of Hilbert's Tenth Problem over the rationals.That problem remains open. 
    more » « less
  2. Abstract We prove almost everywhere convergence of continuous-time quadratic averages with respect to two commuting $$\mathbb {R}$$ -actions, coming from a single jointly measurable measure-preserving $$\mathbb {R}^2$$ -action on a probability space. The key ingredient of the proof comes from recent work on multilinear singular integrals; more specifically, from the study of a curved model for the triangular Hilbert transform. 
    more » « less
  3. An inequality of Brascamp-Lieb-Luttinger and of Rogers states that among subsets of Euclidean space R d \mathbb {R}^d of specified Lebesgue measures, (tuples of) balls centered at the origin are maximizers of certain functionals defined by multidimensional integrals. For d > 1 d>1 , this inequality only applies to functionals invariant under a diagonal action of Sl ⁡ ( d ) \operatorname {Sl}(d) . We investigate functionals of this type, and their maximizers, in perhaps the simplest situation in which Sl ⁡ ( d ) \operatorname {Sl}(d) invariance does not hold. Assuming a more limited symmetry encompassing dilations but not rotations, we show under natural hypotheses that maximizers exist, and, moreover, that there exist distinguished maximizers whose structure reflects this limited symmetry. For small perturbations of the Sl ⁡ ( d ) \operatorname {Sl}(d) –invariant framework we show that these distinguished maximizers are strongly convex sets with infinitely differentiable boundaries. It is shown that in the absence of partial symmetry, maximizers fail to exist for certain arbitrarily small perturbations of Sl ⁡ ( d ) \operatorname {Sl}(d) –invariant structures. 
    more » « less
  4. null (Ed.)